|
VFTS 102 is a star located in the Tarantula nebula, a star forming region in the Large Magellanic Cloud, a satellite galaxy of the Milky Way. The peculiarity of this star is its projected equatorial velocity of ~600 km/s (about 2.000.000 km/h), making it the fastest rotating massive star known.〔(【引用サイトリンク】url=http://www.universeforfacts.com/2013/12/vfts-102-fastest-spinning-star-fact-of.html )〕 It also holds the world record for being the fastest approaching star. 〔Dufton et al., ("The VLT-FLAMES Tarantula Survey: The Fastest Rotating O-type Star and Shortest Period LMC Pulsar—Remnants of a Supernova Disrupted Binary?" ), ''The Astrophysical Journal'' Letters, 2011.〕 The resulting centrifugal force tend to flatten the star; material can be lost in the loosely bound equatorial regions, allowing for the formation of a disk. The spectroscopic observations seem to confirm this, and the star is classified as Oe, possibly due to emission from such an equatorial disk of gas. This star was observed by the VLT Flames Tarantula Survey collaboration〔(VLT Flames Tarantuala Survey Homepage )〕 using the VLT, Very Large Telescope in Chile. One member of this team is Matteo Cantiello,〔(Matteo Cantiello HomePage )〕 an Italian astrophysicist who emigrated to the United States and is currently working at the Kavli Institute for Theoretical Physics at University of California Santa Barbara. In 2007, together with a few collaborators, he predicted the existence of massive stars with properties very similar to VFTS 102.〔Cantiello et al., ("Binary Star Progenitors of Long Gamma-Ray Bursts" ), ''Astronomy and Astrophysics'' Letters, 2007.〕 In its theoretical model, the extreme rotational speed is caused by the transfer of material from a companion star in a binary system. After this "cosmic dance", the donor star is predicted to explode as a supernova. The spun-up companion instead is likely to be launched out of the orbit and move away from its stellar neighbors at high speed. Such a star is called a runaway. VFTS 102 fits this theoretical model very well, being found to be a rapidly rotating runaway star and lying close to a pulsar and a supernova remnant. Other scenarios, like a dynamical ejection from the core of the star cluster R136, are also possible. ==External links== * (ESO Press Release ) * (STScI Press Release ) * (News on "Corriere della Sera" ) * (News on "Il Tirreno" ) * (Press Release at University of California Santa Barbara ) * (VFTS102 on DailyMail ) 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「VFTS 102」の詳細全文を読む スポンサード リンク
|